Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gut Microbes ; 15(2): 2284247, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38057970

RESUMEN

The occurrence and development of Parkinson's disease (PD) have been demonstrated to be related to gut dysbiosis, however, the impact of fecal microbiota transplantation (FMT) on microbiota engraftment in PD patients is uncertain. We performed a randomized, placebo-controlled trial at the Department of Neurology, Army Medical University Southwest Hospital in China (ChiCTR1900021405) from February 2019 to December 2019. Fifty-six participants with mild to moderate PD (Hoehn-Yahr stage 1-3) were randomly assigned to the FMT and placebo group, 27 patients in the FMT group and 27 in the placebo group completed the whole trial. During the follow-up, no severe adverse effect was observed, and patients with FMT treatment showed significant improvement in PD-related autonomic symptoms compared with the placebo group at the end of this trial (MDS-UPDRS total score, group×time effect, B = -6.56 [-12.98, -0.13], P < 0.05). Additionally, FMT improved gastrointestinal disorders and a marked increase in the complexity of the microecological system in patients. This study demonstrated that FMT through oral administration is clinically feasible and has the potential to improve the effectiveness of current medications in the clinical symptoms of PD patients.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Humanos , Trasplante de Microbiota Fecal/métodos , Enfermedad de Parkinson/terapia , Disbiosis/terapia , Disbiosis/etiología , China , Resultado del Tratamiento , Heces
2.
J Autoimmun ; 138: 103035, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37216868

RESUMEN

BACKGROUND: Transcriptome-wide aberrant RNA editing has been shown to contribute to autoimmune diseases, but its extent and significance in primary Sjögren's syndrome (pSS) are currently poorly understood. METHODS: We systematically characterized the global pattern and clinical relevance of RNA editing in pSS by performing large-scale RNA sequencing of minor salivary gland tissues obtained from 439 pSS patients and 130 non-pSS or healthy controls. FINDINGS: Compared with controls, pSS patients displayed increased global RNA-editing levels, which were significantly correlated and clinically relevant to various immune features in pSS. The elevated editing levels were likely explained by significantly increased expression of adenosine deaminase acting on RNA 1 (ADAR1) p150 in pSS, which was associated with disease features. In addition, genome-wide differential RNA editing (DRE) analysis between pSS and non-pSS showed that most (249/284) DRE sites were hyper-edited in pSS, especially the top 10 DRE sites dominated by hyper-edited sites and assigned to nine unique genes involved in the inflammatory response or immune system. Interestingly, among all DRE sites, six RNA editing sites were only detected in pSS and resided in three unique genes (NLRC5, IKZF3 and JAK3). Furthermore, these six specific DRE sites with significant clinical relevance in pSS showed a strong capacity to distinguish between pSS and non-pSS, reflecting powerful diagnostic efficacy and accuracy. CONCLUSION: These findings reveal the potential role of RNA editing in contributing to the risk of pSS and further highlight the important prognostic value and diagnostic potential of RNA editing in pSS.


Asunto(s)
Síndrome de Sjögren , Humanos , Síndrome de Sjögren/diagnóstico , Síndrome de Sjögren/genética , Edición de ARN , Biomarcadores/metabolismo , Glándulas Salivales Menores , ARN , Péptidos y Proteínas de Señalización Intracelular/genética
3.
Front Med (Lausanne) ; 9: 854677, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372443

RESUMEN

Background and Aim: The identification of ulcerative colitis (UC) and Crohn's disease (CD) is a key element interfering with therapeutic response, but it is often difficult for less experienced endoscopists to identify UC and CD. Therefore, we aimed to develop and validate a deep learning diagnostic system trained on a large number of colonoscopy images to distinguish UC and CD. Methods: This multicenter, diagnostic study was performed in 5 hospitals in China. Normal individuals and active patients with inflammatory bowel disease (IBD) were enrolled. A dataset of 1,772 participants with 49,154 colonoscopy images was obtained between January 2018 and November 2020. We developed a deep learning model based on a deep convolutional neural network (CNN) in the examination. To generalize the applicability of the deep learning model in clinical practice, we compared the deep model with 10 endoscopists and applied it in 3 hospitals across China. Results: The identification accuracy obtained by the deep model was superior to that of experienced endoscopists per patient (deep model vs. trainee endoscopist, 99.1% vs. 78.0%; deep model vs. competent endoscopist, 99.1% vs. 92.2%, P < 0.001) and per lesion (deep model vs. trainee endoscopist, 90.4% vs. 59.7%; deep model vs. competent endoscopist 90.4% vs. 69.9%, P < 0.001). In addition, the mean reading time was reduced by the deep model (deep model vs. endoscopists, 6.20 s vs. 2,425.00 s, P < 0.001). Conclusion: We developed a deep model to assist with the clinical diagnosis of IBD. This provides a diagnostic device for medical education and clinicians to improve the efficiency of diagnosis and treatment.

4.
Front Endocrinol (Lausanne) ; 13: 817100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250873

RESUMEN

Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder of unknown etiology. IBS is caused by a disruption in the gut-brain axis. Given the importance of the gut microbiota in maintaining local and systemic homeostasis of immunity, endocrine, and other physiological processes, the microbiota-gut-brain axis has been proposed as a key regulator in IBS. Neurotransmitters have been shown to affect blood flow regulation, intestinal motility, nutrient absorption, the gastrointestinal immune system, and the microbiota in recent studies. It has the potential role to play a function in the pathophysiology of the gastrointestinal and neurological systems. Transmitters and their receptors, including 5-hydroxytryptamine, dopamine, γ-aminobutyric acid, and histamine, play an important role in IBS, especially in visceral sensitivity and gastrointestinal motility. Studies in this field have shed light on revealing the mechanism by which neurotransmitters act in the pathogenesis of IBS and discovering new therapeutic strategies based on traditional pharmacological approaches that target the nervous system or novel therapies that target the microbiota.


Asunto(s)
Microbioma Gastrointestinal , Síndrome del Colon Irritable , Microbiota , Eje Cerebro-Intestino , Microbioma Gastrointestinal/fisiología , Humanos , Síndrome del Colon Irritable/etiología , Neurotransmisores
6.
Front Cell Infect Microbiol ; 11: 759435, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34737978

RESUMEN

Autism spectrum disorder (ASD) is a severe brain development disorder that is characterized by deficits in social communication and restricted, repetitive and stereotyped behaviors. Accumulating evidence has suggested that gut microbiota disorders play important roles in gastrointestinal symptoms and neurodevelopmental dysfunction in ASD patients. Manipulation of the gut microbiota by fecal microbiota transplantation (FMT) was recently shown to be a promising therapy for the treatment of various diseases. Here, we performed a clinical trial to evaluate the effect of FMT on gastrointestinal (GI) and ASD symptoms and gut microbiota alterations in children with ASD. We found that there was a large difference in baseline characteristics of behavior, GI symptoms, and gut microbiota between children with ASD and typically developing (TD) control children. FMT could improve GI symptoms and ASD symptoms without inducing any severe complications. Similarly, FMT significantly changed the serum levels of neurotransmitters. We further observed that FMT could promote the colonization of donor microbes and shift the bacterial community of children with ASD toward that of TD controls. The abundance of Eubacterium coprostanoligenes pre-FMT was positively correlated with high GSRS scores, whereas a decrease in Eubacterium coprostanoligenes abundance induced by FMT was associated with the FMT response. Our data suggest that FMT might be a promising therapeutic strategy to improve the GI and behavioral symptoms of patients with ASD, possibly due to its ability to alter gut microbiota and highlight a specific microbiota intervention that targets Eubacterium coprostanoligenes that can enhance the FMT response. This trial was registered at the Chinese Clinical Trial Registry (www.chictr.org.cn) (trial registration number ChiCTR1800014745).


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Microbioma Gastrointestinal , Trastorno del Espectro Autista/terapia , Niño , Eubacterium , Trasplante de Microbiota Fecal , Humanos
7.
J Genet Genomics ; 48(9): 781-791, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34509383

RESUMEN

Gut dysbiosis is suggested to play a critical role in the pathogenesis of gout. The aim of our study was to identify the characteristic dysbiosis of the gut microbiota in gout patients and the impact of a commonly used uric acid-lowering treatment, febuxostat on gut microbiota in gout. 16S ribosomal RNA sequencing and metagenomic shotgun sequencing was performed on fecal DNA isolated from 38 untreated gout patients, 38 gout patients treated with febuxostat, and 26 healthy controls. A restriction of gut microbiota biodiversity was detected in the untreated gout patients, and the alteration was partly restored by febuxostat. Biochemical metabolic indexes involved in liver and kidney metabolism were significantly associated with the gut microbiota composition in gout patients. Functional analysis revealed that the gut microbiome of gout patients had an enriched function on carbohydrate metabolism but a lower potential for purine metabolism, which was comparatively enhanced in the febuxostat treated gout patients. A classification microbial model obtained a high mean area under the curve up to 0.973. Therefore, gut dysbiosis characterizings gout could potentially serve as a noninvasive diagnostic tool for gout and may be a promising target of future preventive interventions.


Asunto(s)
Microbioma Gastrointestinal
8.
Rheumatology (Oxford) ; 60(6): 2979-2989, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33247940

RESUMEN

OBJECTIVE: To determine the upregulation of IL-21-inducible genes in minor salivary glands (MSGs) in 28 primary SS (pSS) patients and 12 non-pSS subjects and correlate it with disease characteristics. METHODS: RNA sequencing was utilized to compare IL-21-inducible genes expression in the MSGs between pSS and non-pSS subjects. The subgroups were characterized according to the IL-21 score calculated by seven IL-21-inducible genes. Furthermore, the disease characteristics and transcripts implicated in hypoxia and interferon signalling were assessed in two pSS subgroups. RESULTS: We observed that the expression of the IL-21-inducible genes (IL-21, IL-21R, JAK3, STAT1, HLA-B, CCR7 and CXCL10), the so-called IL-21 signature genes, was significantly increased in pSS patients. The upregulation of JAK3 expression may be induced by hypomethylation of the JAK3 promoter in pSS patients and putatively associated with POU2F2. The patients with increased IL-21 signature gene expression showed an increased EULAR Sjögren's Syndrome Disease Activity Index score and increased enrichment of B cells, memory B cells, CD4+ T cells and CD8+ T cells. Furthermore, the IL-21 scores in the anti-SSA+, SSB+, ANA+ and high IgG samples were higher than those in the respective antibody-negative samples and normal IgG. In addition, we found both hypoxia and IFN-relevant genes showed strong correlation with IL-21 signature gene expression, indicating their interaction in pSS. CONCLUSION: IL-21 signature gene was associated with typical disease characteristics in pSS, which provides insight into the contribution of the IL-21 signalling pathway to the pathogenesis of the disease and might provide a novel treatment strategy for this subtype of pSS.


Asunto(s)
Interleucinas/genética , Glándulas Salivales Menores/patología , Síndrome de Sjögren/genética , Adulto , Femenino , Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Mapas de Interacción de Proteínas , Regulación hacia Arriba
9.
Front Cell Dev Biol ; 8: 592490, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33344450

RESUMEN

Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune disease characterized by exocrine gland damage and extraglandular involvements. To identify potential biomarkers for the early detection of pSS and to further investigate the potential roles of the biomarkers in the progression of pSS, our previous RNA sequencing data and four microarray data of salivary glands (SGs) were combined for integrative transcriptome analysis between pSS and non-pSS. Differential gene expression analysis, gene co-expression network analysis, and pathway analysis were conducted to detect hub genes, which were subsequently investigated in peripheral blood mononuclear cell (PBMC) and plasma. Correlation analysis, single-gene Gene Set Enrichment Analysis, and receiver operating characteristic (ROC) curve were applied to investigate the potential function of the hub genes and their classification capacity for pSS. A total of 51 common up-regulated genes were identified among different pSS cohorts. A key module was found to be the most closely linked to pSS, which was significantly associated with inflammation-related pathways. Seven overlapped hub genes (ICOS, SELL, CR2, BANK1, MS4A1, ZC3H12D, and CCR7) were identified, among which ICOS was demonstrated to be involved in most crucial immune pathways. ICOS was up-regulated not only in SGs but also in PBMC and plasma in pSS, and the expression of ICOS was closely associated with lymphocytic infiltration in SGs and disease activity of pSS patients. It showed a strong classification capacity with classic clinical index in SGs (ROC curve 0.9821) and significant distinct discrimination in PBMC (ROC curve 0.9107). These findings are expected to gain a further insight into the pathogenesis of pSS and provide a promising candidate for the early detection of pSS.

10.
Gene ; 757: 144939, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32640306

RESUMEN

Osteoarthritis (OA) is a chronic degenerative change with high incidence and leads to a lower quality of life and a larger socioeconomic burden. This study aimed to explore potential crucial genes and pathways associated with OA that can be used as potential biomarkers forearly treatment. Single-cell gene expression profile of 1464 chondrocytes and 192 fibroblasts in OA were downloaded from the public database (GSE104782 and GSE109449) for subsequent analysis. A total of eight clusters in chondrocytes and three clusters in fibroblasts of OA were identified using the Seurat pipeline and the "SingleR" package for cell-type annotation. Moreover, 44 common marker-genes between fibroblastic-like chondrocytes and fibroblasts were identified and the focal adhesions pathway was further identified as a significant potential mechanism of OA via functional enrichment analysis. Further, the reverse transcription quantitative real-time PCR (RT-qPCR) experiments at tissue's and cellular level confirmed that two key marker-genes (COL6A3 and ACTG1) might participate in the progression of OA. Summarily, we inferred that chondrocytes in OA might up-regulate the expression of COL6A3 and ACTG1 to complete fibroblasts transformation through the focal adhesion pathway. These findings are expected to gain a further insight into the development of OA fibrosis process and provide a promising target for treatment for early OA.


Asunto(s)
Actinas/genética , Colágeno Tipo VI/genética , Osteoartritis/genética , Actinas/metabolismo , Anciano , Células Cultivadas , Condrocitos/metabolismo , Colágeno Tipo VI/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis/metabolismo , Osteoartritis/patología , Mapas de Interacción de Proteínas , RNA-Seq , Análisis de la Célula Individual , Transcriptoma , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...